Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Experiments were conducted to reveal the nanostructure evolution in additively manufactured (AMed) 316L stainless steel due to severe plastic deformation (SPD). SPD-processing was carried out using the high-pressure torsion (HPT) technique. HPT was performed on four different states of 316L: the as-built material and specimens heat-treated at 400, 800 and 1100 °C after AM-processing. The motivation for the extension of this research to the annealed states is that heat treatment is a usual step after 3D printing in order to reduce the internal stresses formed during AM-processing. The nanostructure was studied by X-ray line profile analysis (XLPA), which was completed by crystallographic texture measurements. It was found that the as-built 316L sample contained a considerable density of dislocations (1015 m−2), which decreased to about half the original density due to the heat treatments at 800 and 1100 °C. The hardness varied accordingly during annealing. Despite this difference caused by annealing, HPT processing led to a similar evolution of the microstructure by increasing the strain for the samples with and without annealing. The saturation values of the crystallite size, dislocation density and twin fault probability were about 20 nm, 3 × 1016 m−2 and 3%, respectively, while the maximum achievable hardness was ~6000 MPa. The initial <100> and <110> textures for the as-built and the annealed samples were changed to <111> due to HPT processing.more » « less
-
Severe plastic deformation (SPD) is an effective route for the nanocrystallization of multi-principal element alloys (MPEAs). The stability of the refined microstructure is important, considering the high temperature applications of these materials. In the present study, the effect of SPD on the stability of a body-centered cubic (bcc) HfNbTiZr MPEA was investigated. SPD was performed using a high-pressure torsion (HPT) technique by varying the number of turns between ½ and 10. The evolution of phase composition and microstructure was studied near the disk centers and edges where the imposed strain values were the lowest and highest, respectively. Thus, the shear strain caused by HPT varies between 3 (½ turn, near the center) and 340 (10 turns, near the edge). It was found that during annealing up to 1000 K, the bcc HfNbTiZr alloy decomposed into two bcc phases with different lattice constants at 740 K. In addition, at high strains a hexagonal close packed (hcp) phase was formed above 890 K. An inhomogeneous elemental distribution was developed at temperatures higher than 890 K due to the phase decomposition. The scale of the chemical heterogeneities decreased from about 10 µm to 30 nm where the shear strain increased from 3 to 340, which is similar to the magnitude of grain refinement. Anneal-induced hardening was observed in the MPEA after HPT for both low and high strains at 740 K, i.e., the hardness of the HPT-processed samples increased due to heat treatment. At low strain, the hardness remained practically unchanged between 740 and 1000 K, while for the alloy receiving high strains there was a softening in this temperature range.more » « less
An official website of the United States government
